a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS Reverse
↳ QTRS Reverse
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
Used ordering:
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(c(x1)) = x1
POL(u(x1)) = 1 + 2·x1
POL(v(x1)) = 2 + x1
POL(w(x1)) = 1 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
C(a(x)) → C(c(x))
C(a(x)) → C(x)
A(b(x)) → B(a(a(x)))
C(a(x)) → A(c(c(x)))
A(b(x)) → A(a(x))
B(c(x)) → B(x)
B(c(x)) → B(b(x))
B(c(x)) → C(b(b(x)))
A(b(x)) → A(x)
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
C(a(x)) → C(c(x))
C(a(x)) → C(x)
A(b(x)) → B(a(a(x)))
C(a(x)) → A(c(c(x)))
A(b(x)) → A(a(x))
B(c(x)) → B(x)
B(c(x)) → B(b(x))
B(c(x)) → C(b(b(x)))
A(b(x)) → A(x)
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C(a(x)) → C(c(x))
C(a(x)) → C(x)
C(a(x)) → A(c(c(x)))
Used ordering: Polynomial Order [21,25] with Interpretation:
A(b(x)) → B(a(a(x)))
A(b(x)) → A(a(x))
B(c(x)) → B(x)
B(c(x)) → B(b(x))
B(c(x)) → C(b(b(x)))
A(b(x)) → A(x)
POL( A(x1) ) = 1
POL( C(x1) ) = x1 + 1
POL( c(x1) ) = x1
POL( b(x1) ) = max{0, -1}
POL( B(x1) ) = 1
POL( a(x1) ) = x1 + 1
b(c(x)) → c(b(b(x)))
a(b(x)) → b(a(a(x)))
c(a(x)) → a(c(c(x)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
A(b(x)) → B(a(a(x)))
A(b(x)) → A(a(x))
A(b(x)) → A(x)
B(c(x)) → C(b(b(x)))
B(c(x)) → B(b(x))
B(c(x)) → B(x)
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
B(c(x)) → B(x)
B(c(x)) → B(b(x))
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(c(x)) → B(x)
B(c(x)) → B(b(x))
POL( c(x1) ) = x1 + 1
POL( b(x1) ) = x1
POL( B(x1) ) = x1 + 1
POL( a(x1) ) = 1
b(c(x)) → c(b(b(x)))
a(b(x)) → b(a(a(x)))
c(a(x)) → a(c(c(x)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(b(x)) → A(a(x))
A(b(x)) → A(x)
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(b(x)) → A(a(x))
A(b(x)) → A(x)
POL( A(x1) ) = x1 + 1
POL( c(x1) ) = max{0, -1}
POL( b(x1) ) = x1 + 1
POL( a(x1) ) = x1
b(c(x)) → c(b(b(x)))
a(b(x)) → b(a(a(x)))
c(a(x)) → a(c(c(x)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
↳ QTRS Reverse
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
b(a(x)) → a(a(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
b(a(x)) → a(a(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
a(b(x)) → b(a(a(x)))
b(c(x)) → c(b(b(x)))
c(a(x)) → a(c(c(x)))
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
b(a(x)) → a(a(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
b(a(x)) → a(a(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))
a(u(x)) → x
b(v(x)) → x
c(w(x)) → x
u(a(x)) → x
v(b(x)) → x
w(c(x)) → x